Skip to main content

New Drug Approvals 2011 - Pt. XXII Indacaterol Maleate (ArcaptaTM)











ATC Code: R03AC18

On July 1, the FDA approved indacaterol maleate (NDA 022383) for the long-term treatment of patients with chronic obstructive pulmonary disease (COPD) a chronic and serious disease involving restriction of full lung function. The narrowing of airways of COPD is irreversible, and follows inflammation in the lung, believed to be linked to environmental pollutants such as tobacco smoke, workplace dusts and urban air pollution. Indacaterol maleate is administered as an aerosol through a dry powder inhaler and carries a boxed warning for asthma-related death and is not indicated for the treatment of asthma.

The active ingredient of indacaterol maleate is indacaterol (ChEMBL: 1095777) an agonist of the beta-2 adrenergic receptor (Uniprot: P07550, ChEMBL: 210) with measured EC50 of 11nM. Indacaterol exerts its effect through activation of the beta-2 adrenergic receptor, leading to smooth muscle relaxation and a widening of bronchioli in the lungs. Activation of the beta-2 adrenergic receptor stimulates the intracellular adenyl cyclase and increases cAMP levels, which in turn leads to a reduction of the level of calcium ions inside smooth muscle cells. Other long acting beta-adrenoceptor agonists (LABA) such as salmeterol, formoterol and bambuterol entered the market during the 1980s. The duration of action of these earlier compounds is 12 hours, while for indacaterol it is 24 hours.

Multiple crystal structures of the beta-2 adrenergic receptor now exist (PDBe: 2R4R, 2R4S, 2RH1, 3D4S, 3KJ6, 3NY8, 3NY9, 3NYA, 3P0G, 3PDS), a nano-body stabilized structure of the receptor in its activated form is shown below (PDBe: 3p0g).

Indacaterol (IUPAC: (R)-5-(2-((5,6-diethyl-2,3-dihydro-1H-inden-2-yl)amino)-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one, SMILES: CCc1cc2CC(Cc2cc1CC)NC[C@H](O)c3ccc(O)c4NC(=O)C=Cc34 , InChI: 1S/C24H28N2O3/c1-3-14-9-16-11-18(12-17(16)10-15(14)4-2)25-13-22(28)19-5-7-21(27)24-20(19)6-8-23(29)26-24/h5-10,18,22,25,27-28H,3-4,11-13H2,1-2H3,(H,26,29)/t22-/m0/s1, ChemSpider: 5293751, ChEMBL: 1095777) is a is a synthetic small molecule drug with one chiral center. It has a molecular weight of 392.5 Da and calculated LogP of 3.93. Indacaterol has 4 hydrogen bond acceptors and 4 hydrogen bond donors and therefore fully complies with Lipinski's rule of five. The picture below shows both the active ingredient, indacaterol, and maleate.

The USAN stem name -terol indicates that indacaterol is a phenethylamine derivative bronchodilator. Other -terols include salmeterol, formoterol, bambuterol, vilanterol, milveterol and levalbuterol.


Indacaterol's bioavailability after inhalation is (at the recommended dose range of 75-150 µg) is 43-45% and the volume of distribution (Vd) is between 2.36 and 2.56 L.kg-1 and a clearance (CL) of about 20L.hr-1. Steady-state of Indacaterol levels is reached within 12 to 15 days. Plasma protein binding (ppb) of the dosed drug is 95.1-96.2%. Excretion of indacaterol is mainly through the fecal route, either as the parent compound (54% of the dose) or hydroxylated metabolite (23% of the dose).

Indacaterol maleate is administered once daily as an aerosol containing  75-150 µg of active ingredient from a powder inhaler.

The full prescribing information can be found here.

Indacaterol maleate was approved by the European commission in 2009 and is marketed in Europe as Onbrez. In the US, indacaterol maleate will be marketed by Novartis under the trade name Arcapta. 

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid