Skip to main content

New Drug Approvals 2012 - Pt. XV - Carfilzomib (KyorolisTM )




ATC Code: L01XX
Wikipedia: Carfilzomib
On July 20th 2012 the FDA approved Carfilzomib (KyorolisTM) for the treatment of patients with multiple myeloma who have received prior therapies including bortezomib and an immunomodulatory therapy, and who have demonstrated disease progression within 60 days of completion of the previous therapy. Multiple myeloma is a cancer of the Plasma Cells and usually in the bone marrow. Five year survival is about 40% in the UK and and the USA.

Carfilzomib is a chirally defined modified tetrapeptidyl epoxide substrate analogue with a molecular weight of 719.9. The molecular formula is C40H57N5O7. (SMILES= O=C(N[C@H](C(=O)N[C@H](C(=O)N[C@H(C(=O)N[C@H](C(=O)[C@@]1(OC1)C)CC(C)C)Cc2ccccc2)CC(C)C)CCc3ccccc3)CN4CCOCC4)



Cmax and AUC following a single intravenous dose of 27 mg/m2 was 4,232 ng/mL and 379 ng.hr/mL, respectively. The mean steady-state volume of distribution of a 20 mg/m2 dose of carfilzomib was 28 L. Carfilzomib was rapidly and extensively metabolised, via peptidases and epoxide hydrolyses - i.e. non-CYP mediated metabolism. After intravenous administration of ≥ 15 mg/m2, carfilzomib was rapidly cleared from the systemic circulation with a half-life of ≤ 1 hour.

Carfilzomib is a second generation, non-competitive, irreversible proteasome inhibitor. It contains the unusual (for drugs) epoxide group responsible for the irreversible binding to the target. It is differentiated from the first generation proteasome inhibitor bortezomib (boron-based) in this irreversible inhibition mechanism, which is believed to contribute to overcoming bortezomib resistance. Additionally, clinical trials have showed that carfilzomib is associated with fewer incidences of Peripheral Neuropathy (NP) (incidence reported 14% of patients with 1% having Grade 3 NP) in comparison with bortezomib (36% and 24% Grade 3). Epoxides are quite reactive, and can react with many proteins in a biological system.


The molecular target for carfilzomib is the 20S catalytic core of the large multi-protein complex - the proteasome. Specifically, it binds to the N-terminal threonine-containing active site of the endopeptidase proteasome subunit beta type-7 (Uniprot: Q99436).

The amino acid sequence is:

>sp|Q99436|PSB7_HUMAN Proteasome subunit beta type-7 OS=Homo sapiens GN=PSMB7 PE=1 SV=1
MAAVSVYAPPVGGFSFDNCRRNAVLEADFAKRGYKLPKVRKTGTTIAGVVYKDGIVLGAD
TRATEGMVVADKNCSKIHFISPNIYCCGAGTAADTDMTTQLISSNLELHSLSTGRLPRVV
TANRMLKQMLFRYQGYIGAALVLGGVDVTGPHLYSIYPHGSTDKLPYVTMGSGSLAAMAV
FEDKFRPDMEEEEAKNLVSEAIAAGIFNDLGSGSNIDLCVISKNKLDFLRPYTVPNKKGT
RLGRYRCEKGTTAVLTEKITPLEIEVLEETVQTMDTS

Prescribing information had be found here.

The licence holder is Onyx Pharmaceuticals and the product website is www.kyprolis.com

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d