Skip to main content

New Drug Approvals 2012 - Pt. XIX - Enzalutamide (Xtandi capsulesTM)



On August 31, the FDA approved Enzalutamide for the treatment of castration-resistant prostate cancer. Prostate cancer affects predominantly men aged 50 years and older and is the sixth most frequent source of cancer-related deaths in men world-wide.

The prostate is a gland located below the bladder that surrounds the urethra and secretes simple sugars, citrate, zinc and other constituents of liquid semen. Prostate cancer in many cases has only mild symptoms, even without treatment. Prostate cancer can be detected by measuring concentrations of the biomarker prostate specific antigen. Its progression stage is assessed by the widely established Gleason grading scheme. In many cases it is sufficient to monitor cancer progression without treatment.
For aggressive tumors, various treatment options are available and include surgery, irradiation, cryosurgery, chemotherapy and hormonal therapy. Hormonal therapy relies on the tumor's dependence on androgen signalling, which can be ablated using the antiandrogens flutamide (CHEMBL806) and bicalutamide (CHEMBL409). However, after about two to three years, many prostate cancers become refractory to hormone therapy, even though they still rely on androgen signalling. These so-called castration resistant cancers can be treated with docetaxel (CHEMBL92) and, as a second line of defense, the newly approved Enzalutamide.

Enzalutamide and its primary metabolite N-desmethyl enzalutamide competitively inhibit androgen binding to the androgen receptor (Uniprot P10275).


Enzalutamide is a small molecule with molecular weight 464.44 and calculated logP of 3.88. It is practically insoluble in water and is administered in liquid-filled soft gelatin capsules.

IUPAC: 4-{3-[4-cyano-3-(trifluoromethyl)phenyl]-5,5­ dimethyl-4-oxo-2-sulfanylideneimidazolidin-1-yl}-2-fluoro-N-methylbenzamide
SMILES: CNC(=O)c1ccc(N2C(=S)N(c3ccc(C#N)c(C(F)(F)F)c3)C(=O)C2(C)C)cc1F
InChI=1S/C21H16F4N4O2S/c1-20(2)18(31)28(12-5-4-11(10-26)15(8-12)21(23,24)25)19(32)29(20)13-6-7-14(16(22)9-13)17(30)27-3/h4-9H,1-3H3,(H,27,30)
InChIKey=WXCXUHSOUPDCQV-UHFFFAOYSA-N

Enzatulamide is administered in a daily dose of 160mg, which equates to four 40mg capsules. It has a Cmax of 16.6µg/mL that is reached after about one hour and is 97% bound to plasma proteins.

Enzatulamide is metabolised primarily by CYP2C8 (P10632) and CYP3A4 (P08684). A major metabolite, N-desmethyl enzalutamide has similar bioactivity as enzatulamide.

Adverse reactions include asthenia/fatigue, back pain, diarrhea and others.

Enzatulamide is marketed by Medivation under the trade name Xtandi.

Comments

Unknown said…
I think that there is a mis-spelling just below the chemical structure: it says Enzatolamide is a small molecule.

I only bring it up as for a moment I thought that the post was talking about two different (but possibly related) compounds.
jpo said…
Doh, thanks for spotting this.

The blog fairy has been punished!

Popular posts from this blog

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

Multi-task neural network on ChEMBL with PyTorch 1.0 and RDKit

  Update: KNIME protocol with the model available thanks to Greg Landrum. Update: New code to train the model and ONNX exported trained models available in github . The use and application of multi-task neural networks is growing rapidly in cheminformatics and drug discovery. Examples can be found in the following publications: - Deep Learning as an Opportunity in VirtualScreening - Massively Multitask Networks for Drug Discovery - Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set But what is a multi-task neural network? In short, it's a kind of neural network architecture that can optimise multiple classification/regression problems at the same time while taking advantage of their shared description. This blogpost gives a great overview of their architecture. All networks in references above implement the hard parameter sharing approach. So, having a set of activities relating targets and molecules we can tra