Skip to main content

Updated Drug Icons

In the recent release of CHEMBL_15, we have revisited the information displayed in the drug icons used in the ChEMBL interface and in the ChEMBL-og New Drug Approvals monographs and we have made a few changes.

The following images show the main changes (in this example, for the case of an oral synthetic small molecule):




1. We have visually separated the ingredient-specific information (icons in green) from the product-specific information (icons in blue).

2. The chirality icon will now also show if the ingredient is dosed as a racemic mixture (an image of two human hands).

3. An extra icon has been added to indicate the marketing status of a drug product. The product can be available as prescription (an image of the letters RX), over-the-counter (an image of the letters OTC) or discontinued (an image of the letters of RX with a stripe across it).

In summary...

The ingredient icons (in green) display the following information (from left to right)
Drug class
this can either be
Synthetic small molecule
Natural product-derived small molecule
Inorganic small molecule
Peptide/protein
Monoclonal antibody
Enzyme
Oligonucleotide
Oligosaccharide.
Rule of Five
An image of the number five: this is either pass or fail - we fail a molecule if it fails to pass all the individual tests (usually people use fail one parameter); we use AlogP for the calculations and use 5.0 as a cutoff.
New target
An image of a 'bullseye' target: this is either true or false - the target here refers to the molecular target responsible (or believed to be responsible) for its therapeutic efficacy.
Chirality
An image of two human hands: the drug is dosed as a racemic mixture.
An image of a chiral human hand: the drug is dosed as a single optically active substance.
Prodrug
An image of a par of scissors: the drug is essentially inactive in the dosed form and requires some chemical change in order to become pharmacologically active against its efficacy target.











The product icons (in blue) display the following information
Oral delivery
An image of a capsule.
Parenteral delivery
An image of a syringe.
Topical delivery
An image of an ointment tube.
Some drugs are dosed in multiple forms, so this is why we haven't collapsed these down to a single state. Also this icon actually represents the absorption route (so some drug that are actually deliver orally, may in fact be sublingually absorbed).
Boxed warning
An image of a black box: this is either true or false.
Availability
An image of the letters RX: the product is available as prescription.
An image of the letters OTC: the product is available over-the-counter.
An image of the letters RX with a stripe across: the product is discontinued.

patricia

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid